Physikalische Formeln und Konstanten

Mechanik	
gleichförmige Bewegung	$s(t) = s_0 + v \cdot t$
gleichmäßig beschleunigte Bewegung	$v(t) = v_0 + a \cdot t$, $s(t) = s_0 + v_0 \cdot t + \frac{a}{2} \cdot t^2$
Beschleunigungsweg Bremsweg	$s = \frac{{V_1}^2 - {V_0}^2}{2a}$ $\vec{F} = m \cdot \vec{a}$
Grundgleichung der Mechanik	$\vec{F} = m \cdot \vec{a}$
Erdbeschleunigung	$g = 9.81 \frac{m}{s^2}$ $F_L = \frac{1}{2} c_w \rho A v^2$
Luftwiderstandskraft	$F_{L} = \frac{1}{2} c_{w} \rho A v^{2}$
Hubarbeit / Lageenergie (potentielle Energie)	$W = m \cdot g \cdot h$
Beschleunigungsarbeit kinetische Energie	$W = \frac{m}{2} \cdot v^2$ $W = \frac{D}{2} \cdot s^2$
Spannarbeit Spannenergie (F = D·s)	$W = \frac{D}{2} \cdot s^2$
Impulsänderung Kraftstoß	$\Delta p = m \cdot \Delta v = F \cdot \Delta t$
gleichförmige Kreisbewegung	$f = \frac{1}{T}, \ \omega = \frac{2\pi}{T} = 2\pi f = \frac{v}{r}, \ v = \frac{2\pi r}{T} = 2\pi r f = \omega r$
Zentripetalbeschleunigung Zentripetalkraft	$\begin{split} f &= \frac{1}{T}, \ \omega = \frac{2\pi}{T} = 2\pi f = \frac{v}{r}, \ v = \frac{2\pi r}{T} = 2\pi r f = \omega r \\ a_z &= \frac{v^2}{r} = r\omega^2, \ F_z = \frac{mv^2}{r} = mr\omega^2 \\ s(t) &= \hat{s} \cdot sin(\omega t + \phi_0), \ x(t) = \hat{x} \cdot sin(\omega t + \phi_0), \ \dots \end{split}$
harmonische Schwingung	$s(t) = \hat{s} \cdot \sin(\omega t + \varphi_0), \ x(t) = \hat{x} \cdot \sin(\omega t + \varphi_0), \dots$
Federpendel (F = -D·s)	$\omega = \sqrt{\frac{D}{m}} \; , \; \; f = \frac{1}{2\pi} \sqrt{\frac{D}{m}} \; , \; \; T = 2\pi \sqrt{\frac{m}{D}} \; , \label{eq:omega_def}$
Fadenpendel $(F = -mg \cdot sin(\frac{x}{l}) \approx -mg \cdot \frac{x}{l})$	$\omega = \sqrt{\frac{g}{I}} \; , \; \; f = \frac{1}{2\pi} \sqrt{\frac{g}{I}} \; , \; \; T = 2\pi \sqrt{\frac{I}{g}} \; , \label{eq:omega_spectrum}$
U-Rohr (A: Querschnittsfläche, I: Länge der Flüssigkeitssäule)	$\omega = \sqrt{\frac{2A\rho g}{m}} = \sqrt{\frac{2g}{I}} \; , \; \; f = \frac{1}{2\pi} \sqrt{\frac{2g}{I}} \; , \; \; T = 2\pi \sqrt{\frac{I}{2g}} \; . \label{eq:omega_spectrum}$
Reagenzglas, das in einer Flüssigkeit schwimmt	$\omega = \sqrt{\frac{A\rho g}{m}} \; , \; \; f = \frac{1}{2\pi} \sqrt{\frac{A\rho g}{m}} \; , \; \; T = 2\pi \sqrt{\frac{m}{A\rho g}} \; . \label{eq:omega_phi}$
Ausbreitung von Wellen	$c = \lambda f$
Wellengleichung	$s(x,t) = \hat{s} \cdot \sin[\omega(t - \frac{x}{c})] = \hat{s} \cdot \sin(\omega t - \frac{2\pi x}{\lambda}) = \hat{s} \cdot \sin[2\pi(\frac{t}{T} - \frac{x}{\lambda})]$

Elektrizitätslehre	
elektrische Arbeit	$W = U \cdot Q = U \cdot I \cdot t$
elektrische Energie	
elektrische Feldstärke	$E = \frac{F}{q}$
elektrische Feldkonstante	$\varepsilon_0 = 8,85419 \cdot 10^{-12} \frac{\text{C}}{\text{Vm}}$
homogenes elektrisches Feld (Plattenkondensator)	$E = \frac{U}{d} = \frac{\sigma}{\epsilon_0 \epsilon_r}$ $E = \frac{1}{4\pi \epsilon_0 \epsilon_r} \cdot \frac{Q}{r^2}$ $C = \frac{Q}{U} = \epsilon_0 \epsilon_r \cdot \frac{A}{d}$ $W_{el} = \frac{1}{2}CU^2$
Coulomb-Feld (Punktladung Q)	$E = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \cdot \frac{Q}{r^2}$
Kapazität des Plattenkondensators	$C = \frac{Q}{U} = \varepsilon_0 \varepsilon_r \cdot \frac{A}{d}$
Energie des elektrischen Feldes eines Kondensators	$W_{el} = \frac{1}{2}CU^2$
Energiedichte des elektrischen Feldes	$\rho_{\rm el} = \frac{1}{2} \varepsilon_0 \varepsilon_{\rm r} E^2$
magnetische Feldstärke (Kraft auf Leiter)	$B = \frac{F}{I \cdot I \cdot sin[\phi(\vec{I}; \vec{B})]}, \vec{F} = I \cdot \vec{I} \times \vec{B}$
Lorentzkraft	$F = q \cdot v \cdot B \cdot sin[\phi(\vec{v}; \vec{B})], \vec{F} = q \cdot \vec{v} \times \vec{B}$
magnetische Feldkonstante	$\mu_0 = 1,25664 \cdot 10^{-6} \frac{\text{Tm}}{\text{A}} = 4\pi \cdot 10^{-7} \frac{\text{H}}{\text{m}}$
magnetische Feldstärke in einer langen Spule	$B = \mu_o \mu_r \mathbf{I} \cdot \frac{\mathbf{n}}{\mathbf{I}}$
magnetische Feldstärke um einen langen Leiter	$B = \frac{\mu_o \mu_r I}{2\pi r}$
Induktionsgesetz	$U_{ind} = -n\dot{\Phi} = -n\frac{d\Phi}{dt} = -n\frac{d(BA)}{dt} = -n(A\frac{dB}{dt} + B\frac{dA}{dt})$
Selbstinduktion	$U_{ind} = -L\dot{I} = -L\frac{dI}{dt}$
Induktivität einer langen Spule	$L = \mu_0 \mu_r n^2 \frac{A}{I}$
Energie des Magnetfeldes einer Spule	$W_{\text{magn}} = \frac{1}{2}LI^2$
Energiedichte des Magnetfeldes	$W_{magn} = \frac{1}{2}LI^{2}$ $\rho_{magn} = \frac{B^{2}}{2\mu_{0}\mu_{r}}$
Effektivwerte von Wechselspannung und Wechselstrom	$U := U_{\text{eff}} = \frac{\hat{U}}{\sqrt{2}}, \ I := I_{\text{eff}} = \frac{\hat{I}}{\sqrt{2}}$
kapazitiver Blindwiderstand induktiver Blindwiderstand	$U := U_{eff} = \frac{\hat{U}}{\sqrt{2}}, \ I := I_{eff} = \frac{\hat{I}}{\sqrt{2}}$ $X_{C} = \frac{1}{\omega C}, \ X_{L} = \omega L$ $Z = \frac{U}{I} = \sqrt{R^{2} + (\omega L - \frac{1}{\omega C})^{2}}$
Scheinwiderstand (Reihenschaltung - Siebkette)	$Z = \frac{U}{I} = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$
Phasenverschiebung (Reihenschaltung - Siebkette)	$\phi = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right) \qquad \phi > 0 : I(t) \text{ hinkt U(t) nach!}$ $\phi < 0 : I(t) \text{ eilt U(t) voraus!}$
Wirkleistung	$P = U \cdot I \cdot cos(\varphi) = R \cdot I^2$
Resonanzfrequenz von Siebkette und Sperrkreis	$f_0 = \frac{1}{2\pi\sqrt{LC}}$